近年來,中65錳鋼板因具有優(yōu)異的強塑積且兼顧了經(jīng)濟性與工業(yè)可行性而成為了第三代汽車用鋼中的一個研究熱點,如何進一步提高其力學性能是人們研究的重點之一。
基于此,本文在傳統(tǒng)中錳鋼研究的基礎上,設計了一種V合金化中錳鋼并對其進行了熱軋、冷軋、溫軋及隨后的兩相區(qū)退火處理,較為系統(tǒng)地研究了實驗鋼在不同軋制狀態(tài)及不同退火溫度下的觀組織和力學性能變化規(guī)律,探討了V合金化對中錳鋼強度的影響。得到的主要結(jié)果如下:本文通過研究熱軋+兩相區(qū)退火(625℃-800℃)處理的實驗鋼組織與力學性能,得出的結(jié)果表明:實驗鋼組織主要為長條狀δ-鐵素體、板條狀的α-鐵素體+殘余奧氏體(Retained austenite,RA)以及大量細小彌散的VC析出相。對于625℃和750℃的兩相區(qū)退火試樣,VC的析出強化增量分別為-347 MPa和-234 MPa;隨著退火溫度(Intercritical annealing temperature,TIA)的,65錳冷軋鋼板VC析出相尺寸增大和RA板條粗化引起了屈服強度的顯著降低。
隨著TIA的,RA含量先增加后降低,穩(wěn)定性持續(xù)降低,導致實驗鋼的強塑積先增加后降低;當TIA為725℃時,可獲得高達-50GPa·%的強塑積,并且屈服強度達到890 MPa,從而具有優(yōu)異的強塑性配合。通過研究冷軋+兩相區(qū)退火(650℃-800℃)處理的實驗鋼組織與力學性能,其結(jié)果表明:冷軋退火態(tài)實驗鋼的組織主要為長條狀δ-鐵素體、等軸狀α-鐵素體+RA以及大量細小彌散的VC析出相。65mn錳冷軋鋼板其中,當TIA較低時,組織中存在少量板條狀組織;隨著TIA升高,板條狀組織逐漸消失,等軸狀組織逐漸增多。此外,隨著TIA的升高,RA含量逐漸增加而RA穩(wěn)定性持續(xù)降低,導致實驗鋼的強塑積先增加后降低。其中,當TIA為700℃時,獲得高達-52.6GPa·%的強塑積。通過研究溫軋以及溫軋+兩相區(qū)退火(650℃-800℃)處理的實驗鋼組織與力學性能,其結(jié)果表明:溫軋原始態(tài)及溫軋+退火態(tài)實驗鋼的組織均為δ-鐵素體、板條狀與少量等軸狀共存的α-鐵素體+RA以及大量細小彌散VC析出相。當TIA為650-750℃時,其強塑積均能保持在50 GPa·%以上,這表明溫軋?zhí)幚硎箤嶒炰摼哂休^寬的熱處理工藝窗口。因此,溫軋?zhí)幚碛锌赡艹蔀橐环N簡化傳統(tǒng)中錳鋼生產(chǎn)應用的新方法。
預硬化以及服役過程中的變形會使得高錳鋼組織性能發(fā)生改變,相應的腐蝕性能發(fā)生改變。
本文旨在研究變形對65錳鋼板高錳鋼腐蝕性能的影響,可為其在服役環(huán)境中的腐蝕評價及防護提供參考。依據(jù)變形后高錳鋼組織性能的變化,選取變形量為0%,20%,40%,60%四個有代表性的變形量進行研究。本文以變形量為0%,20%,40%,60%的高錳鋼為研究對象,分別進行電化學測試、慢應變速率拉伸試驗和鹽霧腐蝕實驗。利用金相、XRD、EBSD和TEM表征方法觀察形變對高錳鋼組織結(jié)構(gòu)的影響。利用增重法、極化曲線和電化學阻抗譜分析方法研究不同變形量的高錳鋼在不同腐蝕條件下的腐蝕行為。結(jié)合SEM對腐蝕后的表面形貌的對比和XRD對銹層成分分析來探究不同腐蝕條件下的腐蝕機理。65mn錳冷軋鋼板研究結(jié)果表明:隨著軋制變形量的增大,位錯密度逐漸提高,形變孿晶數(shù)量逐漸增加。孿晶的生成阻礙了位錯的運動,使得高錳鋼硬度提高;位錯密度隨著軋制變形量增大而提高,位錯密度的提高是影響高錳鋼腐蝕性能的主導因素。位錯密度的提高使得高錳鋼表面處于高度無序的狀態(tài)增強,表面的電子活性增大,不僅為陰陽離子快速傳輸提供更多的通道,還促進滑移臺階的形成與發(fā)展,利于化學反應的進行。
65mn錳冷軋鋼板高錳鋼受拉應力和腐蝕性介質(zhì)的共同作用,斷裂方式呈現(xiàn)脆性斷裂,塑韌性受到了損失。應力腐蝕敏感性隨著變形量的增大而增大。高錳鋼的基體和銹層產(chǎn)物共同作用影響其耐鹽霧腐蝕的性能,銹層產(chǎn)物主要由?-Fe OOH、?-FeOOH、?-Fe OOH、Fe3O4等組成。變形量大的高錳鋼因鋼基體活性較大和銹層產(chǎn)物中存在更多的具有一定反應活性的?-FeOOH和Fe3O4而耐蝕性較差
在 45#特厚板材不斷的發(fā)展中,眾鑫42crmo冷軋耐磨錳鋼板圓鋼金屬材料(安慶市分公司)健全管理體系,完善管理手段。我們將繼續(xù)堅持客戶至上、誠實守信的宗旨,始終不移的把客戶的利益放在心中。在此,我公司全體員工謹向?qū)窘o予關懷支持和幫助的新老朋友及廣大客戶表示衷心感謝,您的滿意是我們的不懈追求!公司堅持“以人為本、以質(zhì)取勝”的企業(yè)理念,“一切以 45#特厚板材市場為導向,一切以客戶滿意為目標”的經(jīng)營宗旨,我們公司將不斷推出新的 45#特厚板材產(chǎn)品,不斷求新、求實、發(fā)展,真誠希望新老朋友客戶進行廣泛合作,互惠互利、共同發(fā)展!
傳統(tǒng)高65mn錳鋼板(Hadfield鋼)在室溫下能獲得單相奧氏體,具有優(yōu)良的加工硬化能力和抗沖擊能力,因此廣泛用作沖擊載荷下的耐磨材料。然而較低的屈服強度和初始硬度,導致材料在低沖擊載荷下不能完全發(fā)揮其耐磨性就發(fā)生塑性變形,降低了使用壽命。本文設計出一種輕質(zhì)超高錳鋼(Fe-31.6Mn-8.8A1-1.38C),具有低密度、高屈服強度、高初始硬度、良好沖擊韌性等特點,適用于低沖擊載荷下的磨損條件。通過研究時效處理后的相轉(zhuǎn)變、壓縮變形、沖擊磨損分析了實驗鋼的強化機理和磨損機理。
實驗鋼經(jīng)1050℃保溫1.5h水韌處理后獲得單相奧氏體,65錳冷軋鋼板時效后奧氏體基體會彌散析出納米級別的κ’-碳化物,有助于屈服強度和初始硬度。在550℃時效2h綜合力學性能65錳鋼板佳,與僅水韌處理相比屈服強度提高107.4%,初始硬度提高28.7%,其抗拉強度為1041.7 MPa、屈服強度為1002.7 MPa、斷后伸長率為17.6%、沖擊韌性(V型缺口)為62 J/cm2和硬度為268.5 HB。隨著時效溫度升高(550℃~900℃)相轉(zhuǎn)變的順序為:κ’→納米-κ’+β-Mn→亞米-κ’+β-Mn+α→納米-κ’。其中四種類型的κ相析出涉及尺寸、形貌和分布被總結(jié),包括晶內(nèi)型:納米-κ’(<50nm),亞米-κ’(>100nm)。
晶間型:κ*(~1μm)。以及片層狀κ,存在α+κ群落中。在550℃時效下,納米-κ’能促進β-Mn沿晶界析出,不需要借助α相;而在700℃和800℃長時間時效下,由于α相的大量析出,其形成主要借助于γ→α反應。通過納米壓痕測試,獲得了不同時效溫度下基體與析出相的納米硬度。計算得到理論層錯能(SFE)為82.3 mJ/m2,由于平面滑移軟化效應,變形模式以位錯平面滑動為主,隨著變形量的增加,主要的亞結(jié)構(gòu)演變順序為:平面位錯隊列→平面位錯配置(偶極子和Lomer-Cottrell鎖)→泰勒晶格→帶。65錳冷軋鋼板本研究利用壓縮變形,觀察到了高層錯能下被抑制的形變孿晶以及一種多晶結(jié)構(gòu)。通過分析理論臨界孿生應力(σT),當外加應力大于σT,形變孿晶出現(xiàn)。多晶結(jié)構(gòu)內(nèi)部以位錯纏結(jié)為主,通過波狀滑移形成了位錯胞。并提出了多效協(xié)同的強化機理:1)位錯平面滑移導致滑移帶細化和帶形成,2)形變孿晶,3)多晶結(jié)構(gòu)。這些形變亞結(jié)構(gòu)的出現(xiàn)共同限制了位錯運動,促進基體內(nèi)位錯密度的不均勻,從而增強了應變硬化。低沖擊載荷(0.5 J)下,時效后實驗65mn錳鋼板耐磨性更好,磨損百分比更低(0.55%~0.57%)。