圓錐破碎機是礦山行業(yè)中的一個關鍵設備65錳冷軋鋼板,其工作環(huán)境復雜且工作量巨大,因此設置耐磨襯板來保護圓錐破碎機的機體結構,作為該設備重要的消耗配件,其性能和使用壽命直接影響圓錐破碎機的工作效率和生產(chǎn)成本。目前我國破碎機襯板廣泛采用高錳鋼,其特點為屈服強度和初始硬度較低,若無法充分發(fā)揮加工硬化作用,高錳鋼的耐磨性難以滿足圓錐破碎機的使用需求?;诖?本文沿著提高強度和硬度、并保持一定沖擊韌性,從而提高綜合耐磨性的思路,設計了一種以貝氏體和馬氏體為主要組織的圓錐破碎機襯板用貝-馬復相耐磨鑄鋼。研究了貝-馬復相耐磨鑄鋼的相變規(guī)律,得到了 Ac1、Ac3和Ms溫度分別為762℃、843℃和281℃。
65錳鋼板材料的淬透性良好,在40℃/s~0.05℃/s的冷速范圍內(nèi)均可發(fā)生馬氏體相變,在5℃/s~0.05℃/s的冷速范圍內(nèi)均能夠獲得一定含量的貝氏體組織。確定了貝-馬復相耐磨鑄鋼的 熱處理工藝為900℃×2 h空冷或爐冷+回火300℃×2h,此時的力學性能為:抗拉強度1478 MPa、屈服強度1233 MPa、硬度52.1 HRC、常溫沖擊功20.6 J。分析了熱處理工藝參數(shù)對貝-馬復相耐磨鑄鋼力學性能和顯組織的影響規(guī)律,結果表明:淬火保溫溫度直接影響原始奧氏體晶粒、馬氏體板條束和板條塊的尺寸,而對馬氏體板條尺寸的影響具有遲滯性。
淬火冷卻速度影響組織中貝氏體和馬氏體的含量,在馬氏體晶界處的Mn、S、C和Si化合物降低了韌性,65mn錳冷軋鋼板在貝氏體組織中,大角度晶界和Y2O3的析出物對韌性有益。馬氏體組織具有更高密度的位錯纏結和更精細的板條組織,因此納米硬度高于貝氏體組織。通過二體銷-盤磨損實驗和三體沖擊磨料磨損實驗對比了貝-馬復相耐磨鑄鋼和Mn13Cr2的耐磨性,結果表明:貝-馬復相耐磨鑄鋼的耐磨性在銷-盤磨損和1 J、2 J、4 J沖擊磨料磨損時分別比Mn13Cr2高197%和38%、99%、246%。對貝-馬復相耐磨鑄鋼鹽霧腐蝕后再進行三體沖擊磨料磨損實驗,其耐磨性在鹽霧腐蝕1 h、2 h、4 h、8 h和24 h后分別降低了 10%、42%、54%、57%和 58%。提出了一種多維度磨損分析方法來闡釋貝-馬復相耐磨鑄鋼的耐磨機理。65錳鋼板一維磨損分析揭示了沿磨損表面法線方向,貝-馬復相耐磨鑄鋼的加工硬化機理為孿晶、高密度位錯和殘余奧氏體相變,Mn13Cr2的加工硬化機理為位錯纏結和堆垛層錯。
本文意在解決高錳鋼在低應力條件下耐磨性較差的缺點,同時滿足其在高應力沖擊下保持較好的沖擊韌性,開展了高錳鋼表面等離子熔覆FeCoNiCrMnTix高熵合金涂層的探索,研究了高65錳鋼板錳鋼表面等離子熔覆FeCoNiCrMnTix高熵合金涂層后,以及對FeCoNiCrMnTix高熵合金涂層/高錳鋼基體進行時效處理后的組織與性能的演變,探明Ti元素的添加以及時效處理對于FeCoNiCrMn系高熵合金涂層組織與性能的影響,為后續(xù)在高錳鋼表面制備出能夠承受高低應沖擊高熵合金耐磨涂層提供參考。
試驗結果表明:FeCoNiCrMnTix高熵合金涂層在熔覆后表層晶粒結構為等軸晶,同時有少量共晶組織產(chǎn)生,熔覆層中部為樹枝晶,與基體接觸的熔覆層底部為胞狀晶;在時效后熔覆層整體的等軸晶增多,相應的樹枝晶和胞狀晶有所減少。熔覆后FeCoNiCrMnTix的物相構成比較單一穩(wěn)定,65mn冷軋鋼板當x=0的時候熔覆層的物相組成由單一的FCC相組成,主要相為Fe0.64Ni0.36,當Ti元素加入后,有BCC相Co3Ti產(chǎn)生,且新相Co3Ti的峰值也隨Ti元素的增多而提高。在時效過后熔覆層的物相組成沒有很大差別,Co3Ti析出物有了明顯的增多,峰值也有了明顯的提高。整體上各個試樣的硬度從熔覆層到熱影響區(qū)再到基體呈下降趨勢。
65mn錳冷軋鋼板熔覆后的涂層硬度由表至里變化趨勢略下降;時效處理后的涂層硬度由表至里的下降趨勢不明顯,涂層的硬度較為平均,且時效處理前后的試樣 硬度值都隨Ti含量的增多而。其中基體的硬度值在220.4HV左右,熔覆后的高熵合金涂層 硬度值為344.5HV。時效處理后FeCoNiCrMnTi0.5高熵合金涂層的 硬度值為469.7HV。
將成形實驗數(shù)據(jù)與Keeler公式結合計算得到材料的成形極限圖,結果顯示Keeler公式計算所得成形極限圖與實測值較為接近,可用于5Mn鋼的成形極限計算。65錳冷軋鋼板此外,為了研究剪切工藝對中錳鋼力學性能的影響,本文分別采用0.03t、0.05t、0.067t、0.10t、0.12t(t為板料厚度)五種不同間隙進行沖裁,發(fā)現(xiàn)間隙為0.03t時5Mn中錳鋼邊部形貌 ,毛刺小且邊部影響區(qū)淺,力學性能也為優(yōu)異。0.12t間隙樣對應毛刺 且邊部硬化為嚴重,因此力學性能差。為進一步探究剪切工藝對5Mn鋼力學性能的影響,增加激光及線切割樣進行對比。結果顯示激光切割同樣存在邊部硬化情況,但影響區(qū)很窄,對力學性能影響極小。
65mn錳冷軋鋼板·線切割對材料邊部形貌基本無影響,對應了 力學性能。后,為探究5Mn鋼的實際應用潛力,進行了汽車零件進氣端錐的試制及仿真分析。試制結果顯示,5Mn鋼可滿足零件現(xiàn)有制造工藝要求,9道工序后未出現(xiàn)開裂情況,與現(xiàn)用材料304不銹鋼持平。通過Autoform軟件進行仿真分析,結合成形極限分布分析,證明中錳鋼成形性能優(yōu)異,總體可滿足零件生產(chǎn)要求。
為了減少馬氏體中錳鋼因韌塑性能不足而產(chǎn)生的開裂和磨損失效,本文利用淬火-配分(Q&P)工藝在馬氏體中錳鋼基體中引入一定體積分數(shù)殘余奧氏體,借助OM、SEM觀察觀組織形貌,采用TEM、EBSD、XRD等技術分析殘余奧氏體形貌65錳冷軋鋼板、分布與體積分數(shù),使用硬度計、65錳鋼板拉伸試驗機測試鋼的強韌性能,借助磨粒磨損試驗機測試鋼的抗磨損性能。研究了不同冷卻速率對相變行為的影響,淬火-配分(Q&P)工藝對組織演變、強度及磨損性能的影響。
眾鑫42crmo冷軋耐磨錳鋼板圓鋼金屬材料(巢湖市分公司)建立了完善的市場服務體系,各項制度成熟。運用現(xiàn)代企業(yè)的管理方法主要生產(chǎn): 45#特厚板材等系列百多個規(guī)格品種。
眾鑫42crmo冷軋耐磨錳鋼板圓鋼金屬材料(巢湖市分公司)是安徽巢湖認定“高薪技術企業(yè)”、“守合同重信用單位”,今后我公司加快企業(yè)商標戰(zhàn)略制定和實施的步伐,提高 45#特厚板材產(chǎn)品檔次,企業(yè)整體競爭力。
隨著預應變量的增加,退火鐵素體中的位錯密度明顯65錳鋼板增加,部分穩(wěn)定性差的大尺寸RA首先發(fā)生相變而使得RA量逐漸降低,穩(wěn)定性逐漸提高;抗拉強度與屈服強度逐漸提高,而斷后伸長率則逐漸降低。熱軋退火實驗鋼具有高的氫脆敏感性,隨著預應變量的增大,氫脆敏感性逐漸增大,以相對伸長率損失表征的氫脆敏感性指數(shù)由未變形樣的75.9%提高到15%預應變樣的83.2%。充氫樣SSRT宏觀斷口邊部存在脆性平臺,其斷裂機制主要為準解理斷裂,且有較多二次裂紋。
65mn冷軋鋼板退火實驗鋼具有超細晶等軸狀的退火鐵素體+RA復相組織,在預應變過程中發(fā)生了TWIP效應和TRIP效應并出現(xiàn)不穩(wěn)定的中間相ε-馬氏體。與熱軋退火實驗鋼類似,預應變能夠顯著地改變冷軋退火實驗鋼的力學性能。冷軋退火中錳鋼在拉伸過程中出現(xiàn)呂德斯帶以及PLC現(xiàn)象。當預應變量等于呂德斯帶對應的應變時,即預應變量約為3%時,可以使呂德斯帶消失,但預應變對PLC效應則幾乎沒有影響。這主要與隨著預應變量增加,實驗鋼中位錯密度增加、RA穩(wěn)定性提高、形變誘導馬氏體含量增加及形變孿晶的產(chǎn)生等因素有關。對于冷軋退火中錳鋼實驗料,隨著預應變量的增加,充氫試樣中的可擴散氫含量顯著增加而氫擴散系數(shù)降低。與熱軋退火實驗鋼類似,冷軋退火實驗鋼同樣表現(xiàn)出顯著的氫脆敏感性,并且隨著預應變量的增加,氫脆敏感性逐漸增大。
65錳鋼板不同預應變量未充氫樣的SSRT斷口呈現(xiàn)典型的韌窩韌性斷裂特征,而充氫預應變樣斷口由近表面的脆性沿晶+準解理的混合斷裂向心部的韌窩韌性斷裂模式逐漸轉(zhuǎn)變。