想要直觀了解鋁合金型材工字鋼工廠直供產(chǎn)品嗎?別猶豫,快來觀看我們的視頻,讓產(chǎn)品自己說話!
以下是:江西南昌鋁合金型材工字鋼工廠直供的圖文介紹
在空分、液化天然氣、石油化工、航天等領(lǐng)域,奧氏體不銹鋼、鋁合金有著日益廣泛的應(yīng)用。如何將這兩種脾氣、習(xí)性完全不對路子的材料結(jié)合在一起,困難可想而知.梳理國內(nèi)外現(xiàn)狀可以看出,目前鋼鋁連接,工程上主要采用兩種方法:一種是將各自材料制成法蘭,依靠螺栓聯(lián)結(jié)在一起;另一種是鋼鋁焊接接頭形成過渡。對于空分、液化天然氣這種低溫應(yīng)用場合,螺栓聯(lián)結(jié)可靠性遠(yuǎn)遠(yuǎn)不能滿足工程需要,因而焊接過渡形式成為 方式。然而,鋼鋁焊接并非坦途一條。無論是釬焊、熔焊還是壓焊,總是存在這樣那樣的問題難以克服。針對鋼鋁焊接存在的問題和難點,本研究組選擇擴散焊工藝手段,以大尺寸、高可靠性鋼鋁轉(zhuǎn)換接頭為目標(biāo),深入開展相關(guān)工藝及性能評測工作并在以下幾個方面獲得關(guān)鍵性突破。1、了接頭脆化問題:鋼鋁接頭中Fe3Al型金屬間化合物是接頭脆化的根源。我們的工藝完全杜絕了金屬間化合物的產(chǎn)生,從源頭上了脆化的風(fēng)險。而且,鋼鋁之間有顯著的元素擴散,這是獲得高結(jié)合強度界面的保證。2、高可靠性:考察鋼鋁擴散焊接頭的拉伸性能可以發(fā)現(xiàn),接頭斷在鋁側(cè),說明鋼-鋁界面結(jié)合強度高,二者之間并非單純的機械咬合。3、優(yōu)異的耐高溫性能:鋼鋁接頭因為自身結(jié)構(gòu)的特點,在兩端與各自的材料焊接時,接頭失效的風(fēng)險很大。如鋼鋁爆炸焊接頭結(jié)合面在施焊時溫度一般控制在200℃×30min以下,法國T&C公司的鋼鋁接頭hothopping工藝對溫度更加敏感,結(jié)合面應(yīng)控制在150℃以下使用。我們鋼鋁焊接接頭經(jīng)過400℃×20min的熱處理后,接頭試樣同樣斷在鋁合金母材位置。說明鋼鋁結(jié)合面性能并沒有退化。目前,我們開發(fā)的焊接工藝適合各種尺寸的鋼鋁接頭,而且接頭尺寸越大,工藝優(yōu)勢越顯著。
鋁型材散熱器生產(chǎn)工藝:首先貼膜不能直接貼在鉻化層上,否則會影響膜的附著力;其次,貼膜后要及時噴涂不能停放時間過長,否則容易導(dǎo)致貼膜脫落,嚴(yán)重時還要重新貼膜;再次是撕膜時要控制流平時間,不能貼膜后馬上撕膜,這樣會對產(chǎn)品質(zhì)量帶來一定的影響;*后是兩種顏色的噴涂順序要根據(jù)具體情況確定,既要考慮到兩次固化,又要考慮到遮蓋效果。貼膜質(zhì)量控制:散熱器鋁型材質(zhì)量控制中貼膜質(zhì)量很重要,若貼不好,會導(dǎo)致噴涂困難,如貼膜的張力不大、壓緊程度要控制好;對形狀復(fù)雜的部位要分開貼膜,貼膜后要檢查貼膜是否貼牢。否則將會給噴涂帶來麻煩。影響噴涂質(zhì)量。公司生產(chǎn)的鋁型材產(chǎn)品均由專業(yè)的技術(shù)人員嚴(yán)格把關(guān),并擁有專業(yè)的生產(chǎn)設(shè)備,保證質(zhì)量問題,客戶可放心選購我廠產(chǎn)品。鋁型材散熱器的貼膜材質(zhì):首先要對貼膜材質(zhì)合理選擇,根據(jù)散熱器鋁型材產(chǎn)品的要求、表面處理方式,選擇相應(yīng)的貼膜,同是還要考慮貼膜上的膠對鋁型材表面質(zhì)量的影響。
縮孔是鋁合金壓鑄件常見的內(nèi)部缺陷,常出現(xiàn)在產(chǎn)品壁厚較大或者易形成熱點的位置。一般來講,只要縮孔不影響產(chǎn)品的使用性能,都以合格的方式來判定。然而,對于一些重要部位,如汽車發(fā)動機汽缸體的冷卻水道孔或潤滑油道孔,出現(xiàn)縮孔是不允許判定合格的。
某企業(yè)的一款鋁合金制發(fā)動機曲軸箱,采用布勒28000kN冷室壓鑄機鑄造,材質(zhì)為ADC12合金,成分見表1。鑄件毛坯質(zhì)量為6.3 kg,后工序進(jìn)行X射線探傷時發(fā)現(xiàn)第二個曲軸軸承孔油道出現(xiàn)縮孔,離油道約8 mm,存在較大的漏油風(fēng)險。據(jù)統(tǒng)計,2017年該位置的縮孔報廢率為5%,經(jīng)過一系列的探索,成功地將廢品率降低為0.2%。本課題從鋁合金壓鑄件縮孔的形成機理[1-5]和鑄造條件兩方面出發(fā),分析鑄件產(chǎn)生縮孔的原因,尋求改善措施,以期為日后解決鋁合金壓鑄件縮孔問題提供參考。一、鋁合金壓鑄件縮孔形成機理及形態(tài)--縮孔形成機理:導(dǎo)致鋁合金壓鑄件縮孔的原因較多,追溯其本源,主要是鋁合金從液相向固相轉(zhuǎn)變過程中鋁液補縮不足而導(dǎo)致。常見的縮孔原因有:①模溫梯度不合理,導(dǎo)致鋁液局部收縮不一致。②鋁液澆注量偏少,導(dǎo)致料餅薄,增壓階段補壓不足。③模具存在熱結(jié)或尖銳區(qū)域。④模具的內(nèi)澆口寬度不夠,面積較小,導(dǎo)致鑄件過早凝固,增壓階段壓力傳遞受阻、鋁液無法補縮。⑤鑄造壓力設(shè)置過低,補縮效果較差。圖1為鋁合金鑄件縮孔形成的示意圖。鑄件縮孔形態(tài):縮孔是一種鋁合金壓鑄件乃至鑄件常見的內(nèi)部缺陷,常出現(xiàn)在產(chǎn)品壁厚較大、模具尖角和模溫溫差較大等區(qū)域。圖2為某款發(fā)動機曲軸箱縮孔形態(tài),縮孔呈似橢圓狀,距離軸承油道孔約10 mm,內(nèi)壁粗糙,無光澤??s孔區(qū)域鑄件壁厚較大,約為22 mm;油道孔銷子前端無冷卻水,模溫較高。汽車發(fā)動機曲軸的兩大軸頸(主軸頸和連桿軸頸)工作載荷較大,磨損嚴(yán)重,工作時必須進(jìn)行壓力潤滑。在此情況下,軸頸的油道孔附近若存在縮孔,將會嚴(yán)重影響潤滑效果。二、縮孔相關(guān)對策:鋁合金壓鑄件產(chǎn)生鑄造缺陷的原因有產(chǎn)品本身的結(jié)構(gòu)特征、模具設(shè)計得澆注系統(tǒng)及冷卻系統(tǒng)設(shè)計不合理、工藝參數(shù)設(shè)計不合理等原因[1~4]。根據(jù)常見的鑄造缺陷原因以及鋁合金鑄件缺陷處理流程,探索解決鋁合金壓鑄件厚大部位縮孔的相應(yīng)對策。前期分析及對策:鑄件縮孔的前期分析從容易操作的工藝參數(shù)出發(fā),通過現(xiàn)場測量及觀察,測得模具內(nèi)澆口厚度為4 mm,計算的內(nèi)澆口速度為40 m/s,產(chǎn)品壁厚*薄處為4.6 mm;料餅厚度為25 mm;鑄造壓力為60MPa。由經(jīng)驗可知,模具設(shè)計符合產(chǎn)品的結(jié)構(gòu)特征,模具澆注系統(tǒng)應(yīng)該不存在增壓階段補縮不足的問題。但是,增壓階段的鋁液補縮與料餅厚度和增壓壓力有直接的關(guān)系,合適的料餅厚度與鑄造壓力才能形成內(nèi)部組 織致密的鑄件,因此,可以懷疑縮孔是由鑄造壓力偏低和料餅偏薄而導(dǎo)致的。前期鑄件縮孔的對策分為兩個:①鑄造壓力由之前的65MPa提高至90MPa;②料餅厚度有原來的25 mm調(diào)整為30 mm。采用上述措施后,經(jīng)過小批量專流驗證,縮孔率由5%減低為4.8%,效果不明顯,說明工藝參數(shù)不是引起鑄件縮孔的主因。中期分析及對策:由于引起鑄件縮孔的本質(zhì)原因是鋁液凝固時補縮不足而導(dǎo)致,而模具溫度分布不均容易導(dǎo)致鋁液凝固順序不合理,從而補縮不足,因此,中期對策分析主要從確保合理的模具溫度入手。由產(chǎn)品3D模型可知,鑄件縮孔處壁厚為22.6mm,壁厚較大,容易引起較高的模具溫度。鋁液凝固時,壁厚較大鑄件內(nèi)部鋁液由于溫度較高,尚處于液相或者固液混合相,而此時內(nèi)澆口進(jìn)行補縮的通道可能已經(jīng)凝固。這樣,在增壓階段鑄件無法進(jìn)行鋁液補縮,從而有形成縮孔的可能。為確保合適的模具溫度,采用熱成像儀測得脫模劑噴涂后模具*高溫度為272℃(見圖3),高于正常的模具噴涂后溫度,其他區(qū)域模具溫度及其分布整體正常。因此,需要降低縮孔處模溫。另外,測得此處冷卻水孔底部距離模具型腔表面距離較大為20 mm,因為較大的熱傳遞距離會降低模具的冷卻效果,所以需要對冷卻水孔進(jìn)行更改。為降低縮孔處模具溫度,主要采取3個方法:①改善模具冷卻系統(tǒng)。將縮孔附件的冷卻水孔深度加深,由距模具表面20 mm變成12 mm,以此快速帶走附近模具熱量,降低模溫;將所有模具冷卻水管與水管統(tǒng)一編號,一一對應(yīng),防止模具保全時裝錯,影響冷卻效果[5,6]。②降低澆注溫度,由675℃變?yōu)?45℃。③延長縮孔處模具噴涂時間,由2 s變成3 s。實施上述整改措施后,縮孔區(qū)域模具噴涂后溫度大幅度降低,約為200℃,屬于正常范圍??s孔率有4.8%降低到4%,說明此類措施對縮孔具有一定效果,但不能徹底解決此區(qū)域的縮孔問題。后期分析及對策:通過前面兩次改善,基本保證壓鑄模具處于理論上的合理狀態(tài),即澆注系統(tǒng)設(shè)計合理、冷卻系統(tǒng)布置合適,工藝參數(shù)設(shè)計*優(yōu)。然而,鑄件縮孔率仍有4%之多。鑄件縮孔處壁厚為22.6 mm,遠(yuǎn)大于其他部位的壁厚,較大的壁厚可能引起鑄件中心凝固時補縮不足,增壓結(jié)束后此區(qū)域還沒有完全凝固,繼續(xù)收縮產(chǎn)生縮孔[7~10],模流分析見圖4。因此,如何解決鑄件縮孔處的補縮不足,也許才是問題的關(guān)鍵。一般來講,鑄件的補縮時通過料餅→澆道→內(nèi)澆口→鑄件這條路徑進(jìn)行的。由于鑄件厚大部位后于內(nèi)澆口凝固,切斷了增壓后期的補縮通道,因此無法補縮。
縮孔是鋁合金壓鑄件常見的內(nèi)部缺陷,常出現(xiàn)在產(chǎn)品壁厚較大或者易形成熱點的位置。一般來講,只要縮孔不影響產(chǎn)品的使用性能,都以合格的方式來判定。然而,對于一些重要部位,如汽車發(fā)動機汽缸體的冷卻水道孔或潤滑油道孔,出現(xiàn)縮孔是不允許判定合格的。
某企業(yè)的一款鋁合金制發(fā)動機曲軸箱,采用布勒28000kN冷室壓鑄機鑄造,材質(zhì)為ADC12合金,成分見表1。鑄件毛坯質(zhì)量為6.3 kg,后工序進(jìn)行X射線探傷時發(fā)現(xiàn)第二個曲軸軸承孔油道出現(xiàn)縮孔,離油道約8 mm,存在較大的漏油風(fēng)險。據(jù)統(tǒng)計,2017年該位置的縮孔報廢率為5%,經(jīng)過一系列的探索,成功地將廢品率降低為0.2%。本課題從鋁合金壓鑄件縮孔的形成機理[1-5]和鑄造條件兩方面出發(fā),分析鑄件產(chǎn)生縮孔的原因,尋求改善措施,以期為日后解決鋁合金壓鑄件縮孔問題提供參考。一、鋁合金壓鑄件縮孔形成機理及形態(tài)--縮孔形成機理:導(dǎo)致鋁合金壓鑄件縮孔的原因較多,追溯其本源,主要是鋁合金從液相向固相轉(zhuǎn)變過程中鋁液補縮不足而導(dǎo)致。常見的縮孔原因有:①模溫梯度不合理,導(dǎo)致鋁液局部收縮不一致。②鋁液澆注量偏少,導(dǎo)致料餅薄,增壓階段補壓不足。③模具存在熱結(jié)或尖銳區(qū)域。④模具的內(nèi)澆口寬度不夠,面積較小,導(dǎo)致鑄件過早凝固,增壓階段壓力傳遞受阻、鋁液無法補縮。⑤鑄造壓力設(shè)置過低,補縮效果較差。圖1為鋁合金鑄件縮孔形成的示意圖。鑄件縮孔形態(tài):縮孔是一種鋁合金壓鑄件乃至鑄件常見的內(nèi)部缺陷,常出現(xiàn)在產(chǎn)品壁厚較大、模具尖角和模溫溫差較大等區(qū)域。圖2為某款發(fā)動機曲軸箱縮孔形態(tài),縮孔呈似橢圓狀,距離軸承油道孔約10 mm,內(nèi)壁粗糙,無光澤??s孔區(qū)域鑄件壁厚較大,約為22 mm;油道孔銷子前端無冷卻水,模溫較高。汽車發(fā)動機曲軸的兩大軸頸(主軸頸和連桿軸頸)工作載荷較大,磨損嚴(yán)重,工作時必須進(jìn)行壓力潤滑。在此情況下,軸頸的油道孔附近若存在縮孔,將會嚴(yán)重影響潤滑效果。二、縮孔相關(guān)對策:鋁合金壓鑄件產(chǎn)生鑄造缺陷的原因有產(chǎn)品本身的結(jié)構(gòu)特征、模具設(shè)計得澆注系統(tǒng)及冷卻系統(tǒng)設(shè)計不合理、工藝參數(shù)設(shè)計不合理等原因[1~4]。根據(jù)常見的鑄造缺陷原因以及鋁合金鑄件缺陷處理流程,探索解決鋁合金壓鑄件厚大部位縮孔的相應(yīng)對策。前期分析及對策:鑄件縮孔的前期分析從容易操作的工藝參數(shù)出發(fā),通過現(xiàn)場測量及觀察,測得模具內(nèi)澆口厚度為4 mm,計算的內(nèi)澆口速度為40 m/s,產(chǎn)品壁厚*薄處為4.6 mm;料餅厚度為25 mm;鑄造壓力為60MPa。由經(jīng)驗可知,模具設(shè)計符合產(chǎn)品的結(jié)構(gòu)特征,模具澆注系統(tǒng)應(yīng)該不存在增壓階段補縮不足的問題。但是,增壓階段的鋁液補縮與料餅厚度和增壓壓力有直接的關(guān)系,合適的料餅厚度與鑄造壓力才能形成內(nèi)部組 織致密的鑄件,因此,可以懷疑縮孔是由鑄造壓力偏低和料餅偏薄而導(dǎo)致的。前期鑄件縮孔的對策分為兩個:①鑄造壓力由之前的65MPa提高至90MPa;②料餅厚度有原來的25 mm調(diào)整為30 mm。采用上述措施后,經(jīng)過小批量專流驗證,縮孔率由5%減低為4.8%,效果不明顯,說明工藝參數(shù)不是引起鑄件縮孔的主因。中期分析及對策:由于引起鑄件縮孔的本質(zhì)原因是鋁液凝固時補縮不足而導(dǎo)致,而模具溫度分布不均容易導(dǎo)致鋁液凝固順序不合理,從而補縮不足,因此,中期對策分析主要從確保合理的模具溫度入手。由產(chǎn)品3D模型可知,鑄件縮孔處壁厚為22.6mm,壁厚較大,容易引起較高的模具溫度。鋁液凝固時,壁厚較大鑄件內(nèi)部鋁液由于溫度較高,尚處于液相或者固液混合相,而此時內(nèi)澆口進(jìn)行補縮的通道可能已經(jīng)凝固。這樣,在增壓階段鑄件無法進(jìn)行鋁液補縮,從而有形成縮孔的可能。為確保合適的模具溫度,采用熱成像儀測得脫模劑噴涂后模具*高溫度為272℃(見圖3),高于正常的模具噴涂后溫度,其他區(qū)域模具溫度及其分布整體正常。因此,需要降低縮孔處模溫。另外,測得此處冷卻水孔底部距離模具型腔表面距離較大為20 mm,因為較大的熱傳遞距離會降低模具的冷卻效果,所以需要對冷卻水孔進(jìn)行更改。為降低縮孔處模具溫度,主要采取3個方法:①改善模具冷卻系統(tǒng)。將縮孔附件的冷卻水孔深度加深,由距模具表面20 mm變成12 mm,以此快速帶走附近模具熱量,降低模溫;將所有模具冷卻水管與水管統(tǒng)一編號,一一對應(yīng),防止模具保全時裝錯,影響冷卻效果[5,6]。②降低澆注溫度,由675℃變?yōu)?45℃。③延長縮孔處模具噴涂時間,由2 s變成3 s。實施上述整改措施后,縮孔區(qū)域模具噴涂后溫度大幅度降低,約為200℃,屬于正常范圍??s孔率有4.8%降低到4%,說明此類措施對縮孔具有一定效果,但不能徹底解決此區(qū)域的縮孔問題。后期分析及對策:通過前面兩次改善,基本保證壓鑄模具處于理論上的合理狀態(tài),即澆注系統(tǒng)設(shè)計合理、冷卻系統(tǒng)布置合適,工藝參數(shù)設(shè)計*優(yōu)。然而,鑄件縮孔率仍有4%之多。鑄件縮孔處壁厚為22.6 mm,遠(yuǎn)大于其他部位的壁厚,較大的壁厚可能引起鑄件中心凝固時補縮不足,增壓結(jié)束后此區(qū)域還沒有完全凝固,繼續(xù)收縮產(chǎn)生縮孔[7~10],模流分析見圖4。因此,如何解決鑄件縮孔處的補縮不足,也許才是問題的關(guān)鍵。一般來講,鑄件的補縮時通過料餅→澆道→內(nèi)澆口→鑄件這條路徑進(jìn)行的。由于鑄件厚大部位后于內(nèi)澆口凝固,切斷了增壓后期的補縮通道,因此無法補縮。
鋁合金是世界上應(yīng)用zui為廣泛的合金材料之一,除了鋁合金門窗外,zui常見鋁合金非鋁合金輪轂?zāi)獙佟H巳硕枷矚g鋁合金輪轂,但是知道鋁合金輪轂來由的人卻是少之又少,所以今天我們就來簡單說一下鋁合金輪轂的起源。鋁合金輪轂以其質(zhì)量輕、散熱快、減震性能好可靠,外觀漂亮等優(yōu)點深得人們喜愛。而賽車運動所需要的正是要具備這些的特質(zhì)的輪轂,因此早在1920年,賽車設(shè)計師哈利米勒(harry a.miller)就萌生了制作鋁合金輪轂的想法,并為此申請了概念 ??上У氖怯捎诜N種原因,他并未制作任何鋁合金輪轂。但是,布加迪汽車的創(chuàng)始人埃托雷布加迪(ettore bugatti)十分中意這一創(chuàng)意,并于1924年在莫爾塞姆的鑄造廠成功地用自己設(shè)計的模具鑄造了鋁輪、輻條以及剎車鼓,并將其安裝在布加迪Type 35上。一般來說,簧下質(zhì)量越低,慣性矩越小,操縱性也就越好。鋁合金剛好具有質(zhì)量較輕的特質(zhì),這也就使得安裝鋁合金輪轂的布加迪Type 35在操縱方面十分得心應(yīng)手。對于早期長達(dá)幾小時甚至幾天的賽車比賽來說,鋁合金輪轂無疑是給車手疊了一層“buff”,這也是布加迪能能夠在1925年至1930年間統(tǒng)治世界賽道的原因之一。不過,鋁合金輪轂的首次實戰(zhàn)就沒有這么順利了。在1924年8月3日的里昂大獎賽上,布加迪將鋁合金輪轂安裝在參加比賽的Type 35賽車上,該輪轂由8個扁平輻條,一個可移動的輪緣和一個集成的制動鼓構(gòu)成。埃托雷·布加迪稱這款鋁合金輪轂為一款精美的雕塑藝術(shù)品,一次藝術(shù)與技術(shù)的完美融合。往往打臉就是來得這么快。當(dāng)日大獎賽上,所有安裝鋁合金輪轂的布加迪Type 35賽車都沒有完成比賽。原因是賽車使用的輪胎并沒有采用正確地硫化處理,導(dǎo)致了胎面在高速運動中飛了出去。但問題是出在輪胎上,對于鋁合金的輪轂影響不大,所以埃托雷布加迪依舊對自己的輪轂創(chuàng)新充滿心。在接下來的幾年里,埃托雷布加迪制造了七種不同類型的鋁合金輪轂,還分別為Type 35、Type 39型和Type 51賽車設(shè)計了三種不同的剎車系統(tǒng)。一般來說,車輪的空氣流動性越好,渦流越低,對于車輪的設(shè)計就越嚴(yán)苛復(fù)雜。而同樣的,對于空氣動力學(xué)要求嚴(yán)格的賽車對于制動器的散熱要求同等嚴(yán)苛。在高負(fù)荷的賽車運動中,制動器產(chǎn)生的熱量必須迅速且充分地消散,而扁平化與開放式的輪轂設(shè)計剛好可以滿足這一點。為此,埃托雷布加迪開始不斷改進(jìn)鋁合金輪轂的造型,并順手注冊了“關(guān)于與冷卻盤的車輪有關(guān)的改進(jìn)”“彈性車輪與徑向和軸向彈簧輪輞相對于車輪中心”等 。值得一提的是,這些與鋁合金輪轂有關(guān)的 只不過是他個人所擁有的500項 中的寥寥一筆。也就從此時起,多輻條輪轂成為了布加迪的標(biāo)志性特征。后來,布加迪的工程師則是將輪轂造型改為多輻條Y型布局,這種布局更加穩(wěn)定,能承受的壓力也更大。到了現(xiàn)在,鋁合金輪轂的普及度已經(jīng)不用多說了。想成為一家立足于世界的車企,著眼于未來必不可少,很顯然,布加迪做到了,布加迪成功地把鋁合金輪轂帶向了世界。
恒金屬材料銷售 (南昌市分公司)創(chuàng)立于2012年,以生產(chǎn) 無縫鋼管聞名于行業(yè)。其 無縫鋼管產(chǎn)品質(zhì)量過硬、性價比高,尤其在 無縫鋼管產(chǎn)品研發(fā)設(shè)計方面,聘請頂尖設(shè)計師,堅持品牌個性化路線,結(jié)合現(xiàn)代潮流。在營銷方面,企業(yè)充分發(fā)揮自己的人才優(yōu)勢、技術(shù)優(yōu)勢、質(zhì)量優(yōu)勢和市場優(yōu)勢,建立起完善的營銷網(wǎng)絡(luò)和服務(wù)體系。目前,出品的 無縫鋼管產(chǎn)品,不僅暢銷國內(nèi),更遠(yuǎn)銷國外,在消費者當(dāng)中享有j i高的認(rèn)可度和美譽度。
點擊查看恒金屬材料銷售
(南昌市分公司)的【產(chǎn)品相冊庫】以及我們的【產(chǎn)品視頻庫】