眾鑫42crmo冷軋耐磨錳鋼板圓鋼金屬材料(大同市分公司)致力于為客戶提供高質量低價格的 45#特厚板材產(chǎn)品為目標,努力為客戶創(chuàng)造價值為己任,擁有先進的 45#特厚板材加工生產(chǎn)設備和強大的物流配送系統(tǒng),可隨時滿足客戶的各種需求,公司以規(guī)格齊全、價格便宜、配送快捷的經(jīng)營優(yōu)勢,以守信用、重質量的服務理念贏得了廣大用戶的信賴和一致好評。


3)65錳冷軋鋼板o熱軋實驗鋼佳臨界退火+淬火和配分(IA&QP)工藝參數(shù)為760℃臨界區(qū)退火30min,180℃等溫淬火10s并在350℃等溫配分180s。該工藝下熱軋實驗鋼展現(xiàn)出了 力學性能,即抗拉強度1231MPa,伸長率24.8%,強塑積可達30.5GPa·%。IA&QP工藝處理后4Mn-Nb-Mo熱軋實驗鋼的抗拉強度均超過了 1024MPa,但伸長率和RA含量不高。
(4)采用新型循環(huán)淬火和奧氏體逆相變(CQ-ART)65錳鋼板工藝處理后的4Mn-Nb-Mo冷軋實驗鋼,晶粒尺寸得到了明顯的細化,同時RA含量顯著提高。兩次循環(huán)淬火后的CQ2-ART冷軋試樣具有高RA含量(62.0%)、佳晶粒尺寸(0.40μm)以及穩(wěn)定性;這為RA在變形期間TRIP效應的產(chǎn)生提供了有力的保證。終CQ2-ART試樣獲得了 綜合性能,即抗拉強度為838MPa,伸長率為90.8%,強塑積達到76.1GPa·%。(5)研究4Mn-Nb-Mo和5Mn-Nb-Mo實驗鋼奧氏體穩(wěn)定性因素,發(fā)現(xiàn)Mn元素的含量是影響其穩(wěn)定性的主要因素。不同晶粒尺寸和Mn含量的RA具有不同等級的RA穩(wěn)定性。實驗鋼RA中存在明顯的Mn配分行為,進而導致RA具有不同級別的穩(wěn)定性,也因此表現(xiàn)出不同的加工硬化行為。本論文設計的4Mn-Nb-Mo和5Mn-Nb-Mo兩種低合金實驗鋼在擁有明顯綜合性能優(yōu)勢的同時達到了盡量減少總合金元素含量的目的。
(6)65錳鋼板三種實驗鋼S3階段加工硬化率曲線的大幅度波動歸因于不連續(xù)TRIP效應。其原因在于RA在拉伸過程中轉變?yōu)轳R氏體并且發(fā)生了體積膨脹,進而抵消部分應力集中并使應力轉移到周圍相中而產(chǎn)生協(xié)同變形,伴隨著應力的松弛和轉移;其次,實驗鋼中的RA需要有不同等級批次的穩(wěn)定性,當應力值達到或超過該等級批次RA可發(fā)生相變的臨界值才可產(chǎn)生TRIP效應。(7)Ms點受到RA中化學成分、晶粒尺寸、屈服強度和應力狀態(tài)等作用影響??赏ㄟ^將實驗鋼MSσ溫度控制在使用溫度以下,以獲得更多更穩(wěn)定的RA,進而產(chǎn)生更為廣泛的TRIP效應,終提高實驗鋼的綜合性能。



較基體的硬度值有很大。測得高錳鋼基體摩擦系數(shù)在0.9左右,65錳鋼板熔覆后的FeCoNiCrMnTix涂層耐磨性有了一定程度的,且隨著Ti含量的增加,耐磨性隨之,熔覆后的FeCoNiCrMnTix涂層在Ti0.5的情況下摩擦系數(shù)和磨損量達到小值,分別為0.38和10.8mg。
經(jīng)時效處理后的FeCoNiCrMnTix涂層試樣的耐磨性整體上有了很大的,隨著Ti含量的增加,其耐磨性也成的趨勢。65mn錳冷軋鋼板其中時效處理后的FeCoNiCrMnTix涂層在Ti0.5的情況下摩擦系數(shù)和磨損量達到小值,分別為0.13和3.6mg?;w磨痕形貌為大量深且寬的滑溝,摩擦類型為磨粒磨損;熔覆后的涂層磨損形貌主要是較淺的滑溝,滑溝處有少量顆粒,且有層片狀脫落,磨損形式為粘著磨損與磨粒磨損。在時效處理后,磨損形貌有了明顯的改善,滑溝數(shù)量變少且更淺,磨粒基本消失。M13高錳鋼基體的沖擊韌性值經(jīng)實驗測得為148.33J/cm2,熔覆后的試樣沖擊韌性值在175J/cm2左右,相較于基體有所。
800°時效16小時后的試樣沖擊韌性值在155J/cm2左右,相較于時效前的試樣沖擊韌性值略下降,但經(jīng)時效后的不含Ti元素的試樣沖擊韌性值達到了182J/cm2。65錳鋼板高錳鋼基體和熔覆后的涂層斷口都含有大量韌窩,為韌性斷裂;時效處理后除Ti0.5試樣斷口含有解理和韌窩,為脆性斷裂和韌性斷裂之外,其他試樣斷口均由大量韌窩構成,為韌性斷裂。整體上FeCoNiCrMnTix較大程度上提高了M13高錳鋼的沖擊韌性。


目前,隨著第三代汽車用現(xiàn)金高強65錳鋼板的開發(fā),越來越多的高品質中錳鋼出現(xiàn)。中錳鋼內(nèi)有大量亞穩(wěn)奧氏體組織,在變形過程中伴隨著相變的發(fā)生,能夠提高材料的強度和塑性。但目前科研人員大多聚焦在中錳鋼成分及組織調(diào)控方面,對于中錳鋼實際應用鮮有關注。本文基于原位掃描電鏡觀察,DIC光學實驗觀察,XRD檢測分析及不同應變量樣品的透射電鏡觀察分析研究了5Mn中錳鋼單軸拉伸過程中的變形機理,結合觀組織表征、力學性能測試和仿真分析,探索中錳鋼成形性能、強韌化機理及實際生產(chǎn)可行性。
5Mn中錳鋼強塑積可達到30GPa.%以上,基體為鐵素體及奧氏體組織,可能存在冷軋及熱處理引入的少量板條馬氏體,其中奧氏體分為大晶粒和小晶粒兩種類型,大晶粒奧氏體穩(wěn)定性低于小晶粒奧氏體。單軸拉伸過程中,屈服階段奧氏體向馬氏體轉變的轉變量較少,因此呂德斯應變僅為1%左右(遠低于同類中錳鋼),屈服結束后較多大晶粒奧氏體發(fā)生相變,20%變形后大量小晶粒奧氏體發(fā)生相變。由于奧氏體晶粒較小,因此相變產(chǎn)生的可動位錯數(shù)量適中,產(chǎn)生連續(xù)傳播的A型PLC帶。部分大晶粒奧氏體在變形過程中出現(xiàn)層錯,其相變過程為奧氏體—ε馬氏體—α’-馬氏體。本文通過埃里克森杯突實驗,擴孔實驗及成形極限實驗研究了5Mn中錳鋼的成形性能。65mn錳冷軋鋼板鋼擁有良好的杯突性能,在光潔區(qū)域杯突值可達到12mm以上。實驗采用激光切割,線切割及沖孔三種預制孔加工工藝研究制孔工藝對擴孔性能的影響,結果顯示線切割制孔樣擴孔性能 ,激光切割制孔樣擴孔性能為穩(wěn)定,沖孔樣由于沖孔過程中局部材料存在相變及加工硬化,因此擴孔性能



www.eayco.com





