針對具有不同淬硬層深度42CrMo鋼板軸承的許用接觸應(yīng)力大小不同的問題,采用線性回歸法建立 變形量與 接觸應(yīng)力之間的線性方程,計算許用接觸應(yīng)力。通過試驗分析了套圈淬硬層深度對軸承許用接觸應(yīng)力的影響。結(jié)果表明,當(dāng)淬硬層深度不大于6 mm時,許用接觸應(yīng)力隨淬硬層深度的增大而增大。
以常用齒輪鋼42CrMo鋼板為研究材料,采用不同空氣流量對其進行離子氮氧共滲,并與傳統(tǒng)離子滲氮進行對比。利用光學(xué)顯鏡、XRD和電化學(xué)工作站對滲層的顯組織、物相和耐蝕性進行了測試和分析。研究結(jié)果表明,在550℃+4h相同溫度和時間條件下,離子氮氧共滲化合物層比傳統(tǒng)離子滲氮滲層厚度增加50%以上,氮化疏松層級別提高到1~2級;同時,離子氮氧共滲后滲層表層形成了一薄層Fe3O4,使耐蝕性得到顯著提高,0.3L/min為 空氣流量。該研究可為改進42CrMo表面改性工藝方案提供參考。
本文通過對42CrMo鋼在N32+N15混合機油、快速淬火油和PAG水溶性淬火介質(zhì)中的淬火試驗,對其機械性能、環(huán)保等進行分析對比。試驗結(jié)果表明,42CrMo鋼板在12%PAG水溶性淬火介質(zhì)中淬火優(yōu)于在油類冷卻劑中淬火,并且具有環(huán)保效果。
為了建立適用于冷塑性加工力學(xué)性能研究的材料本構(gòu)模型,提出了一種基于材料觀變形機制分析的本構(gòu)模型建立及其驗證方法。以高脆硬性的淬火態(tài)42CrMo鋼板為例,首先根據(jù)材料的化學(xué)成分和硬度,運用數(shù)值計算方法獲取冷塑性變形流動應(yīng)力數(shù)據(jù),然后通過分析流動應(yīng)力數(shù)據(jù)特點建立了Z-A (Zerilli-Armstron)修正本構(gòu)方程, 結(jié)合硬度壓痕實驗結(jié)果和有限元仿真對本構(gòu)方程有效性進行了驗證。結(jié)果表明,修正后的Z-A本構(gòu)模型擬合效果好,42crmo鋼板相關(guān)度較高;硬度壓痕實驗結(jié)果與仿真結(jié)果整體誤差較小,所建立的本構(gòu)方程能夠準(zhǔn)確描述材料的力學(xué)行為,可以用于淬火態(tài)42CrMo鋼冷塑性加工的力學(xué)特性研究中。
42CrMo鋼板含有Cr、Mo等多種合金化元素,具有優(yōu)良的綜合力學(xué)性能,既具有較高的強度,又具有較好的塑性,在鍛件,特別是大型鍛件領(lǐng)域,有廣泛的應(yīng)用。本文采用計算機模擬與實驗相結(jié)合的方法,構(gòu)建了 42CrMo鋼較準(zhǔn)確的本構(gòu)模型和材料性能數(shù)據(jù)庫,并開展了材料變形和熱處理淬火過程的計算機模擬和實驗,模擬結(jié)果與實驗結(jié)果吻合較好。
通過熱壓縮實驗,測定了 42CrMo鋼板在不同溫度和應(yīng)變速率下的應(yīng)力-應(yīng)變數(shù)據(jù),構(gòu)建了改進的Johnson-Cook本構(gòu)模型和應(yīng)變補償?shù)腁rrhenius本構(gòu)模型,得到了較大應(yīng)變范圍內(nèi)較準(zhǔn)確的42CrMo鋼的本構(gòu)方程。擬合了手冊中標(biāo)準(zhǔn)的42CrMo鋼的TTT曲線,獲得了較準(zhǔn)確的TTT曲線數(shù)據(jù)。此外還構(gòu)建了包含熱導(dǎo)率、比熱容、楊氏模量、泊松比、相變潛熱、膨脹系數(shù)等較完善、準(zhǔn)確的42CrMo鋼數(shù)據(jù)庫。以構(gòu)建的數(shù)據(jù)庫為基礎(chǔ),通過DEFORM軟件模擬了 42CrMo鋼在變形溫度為1123 K、應(yīng)變速率為0.01 s-1條件下的熱壓縮過程,將模擬結(jié)果中壓縮后試樣的尺寸數(shù)據(jù)、Top Die載荷-行程曲線以及計算得出的應(yīng)力-應(yīng)變曲線分別與相同實驗條件下實測結(jié)果進行對比。結(jié)果顯示,載荷-行程曲線和應(yīng)力-應(yīng)變曲線在數(shù)值大小和變化趨勢上與實驗結(jié)果吻合較好,表明選用的應(yīng)變補償?shù)腁rrhenius本構(gòu)模型能夠比較準(zhǔn)確地描述42crmo鋼板的變形行為。
通過DEFORM軟件模擬了 42CrMo鋼板在1123 K時的末端淬火過程,結(jié)果顯示試樣末端與水的換熱程度劇烈,溫度迅速下降,形成大量馬氏體組織,隨著遠離淬火末端,馬氏體含量逐漸降低,硬度也隨之降低。同時進行了同條件的末端淬火實驗,對淬火后試樣的軸向硬度分布進行了測量,并觀察不同位置組織組成,實驗結(jié)果與模擬結(jié)果基本一致,這表明文中構(gòu)建的42CrMo鋼數(shù)值模擬數(shù)據(jù)庫較為準(zhǔn)確。可以在此基礎(chǔ)上進行不同幾何形狀、不同變形條件、不同熱處理過程的數(shù)值模擬,為實際生產(chǎn)過程的模擬與優(yōu)化打下了良好的基礎(chǔ)。
淬硬42CrMo鋼板以其高強度、高韌性、優(yōu)異的淬透性,適用于制造多種高載荷、交變載荷、高精密等多因素疲勞損傷失效的零件。該材料硬度高,因此普通加工方式加工難度大,加工后表面應(yīng)力不可控,表面質(zhì)量差。超聲輔助磨削在加工硬脆材料方面具有優(yōu)異性能,本文采用軸向超聲振動輔助磨削方式以及普通磨削方式對淬硬42CrMo鋼進行加工試驗,使用各種測量儀器測量兩種磨削后的42CrMo表面質(zhì)量并觀察分析。結(jié)果表明,兩種方式加工后工件表面均有殘余壓應(yīng)力,超聲輔助磨削加工后工件表面殘余壓應(yīng)力提高11.0%~30.8%,形貌優(yōu)于普通磨削加工的粗糙度降低約80%,顯硬度高于普通磨削約10%。
采用不同的旋轉(zhuǎn)速度對42CrMo鋼汽車半軸進行了旋鍛,并進行了磨損性能和沖擊性能的測試與分析。結(jié)果表明,隨旋轉(zhuǎn)速度從30 r/min增大至110 r/min,半軸試樣的磨損體積先減小后增大,沖擊吸收功先增大后減小,磨損性能和沖擊性能先后下降。當(dāng)旋轉(zhuǎn)速度70 r/min時,試樣的磨損體積達到小值17×10-3mm3,沖擊吸收功達到 值89 J,與30 r/min旋轉(zhuǎn)速度相比,磨損體積減小了29.17%,沖擊吸收功增大了11.25%。旋鍛42CrMo鋼半軸的 旋轉(zhuǎn)速度為70 r/min。
大批量42crmo鋼板M24螺栓在淬火、回火后發(fā)現(xiàn)縱向開裂。對開裂螺栓進行了宏觀檢驗、化學(xué)成分檢測、硬度試驗和金相檢驗。結(jié)果表明:裂紋兩側(cè)有氧化現(xiàn)象,裂紋具有沿晶開斷裂的特征,為淬火裂紋,及螺栓開裂是由淬火不當(dāng)所致。
眾鑫42crmo冷軋耐磨錳鋼板圓鋼金屬材料(泰州市分公司)的宗旨是:平等互利,共創(chuàng)雙贏,我們的目標(biāo)是:提供高品質(zhì),高服務(wù),堅持客戶為主的原則,為廣大客戶提供 45#特厚板材服務(wù)。本廠有訓(xùn)練有素的員工及管理隊伍,有多位 45#特厚板材工程師,不但確保 45#特厚板材產(chǎn)品品質(zhì)。在產(chǎn)品設(shè)計、產(chǎn)品制造、工程設(shè)計、產(chǎn)品使用、售后服務(wù)五個層面解決客戶使用流程中所有問題。
用同軸送粉的方式在42CrMo表面激光熔覆Fe-WC合金粉末,通過掃描電鏡、光學(xué)顯鏡、能譜儀觀察分析熔覆層的顯組織特征、WC陶瓷顆粒對熔覆層組織性能的影響、WC陶瓷顆粒分布特征及WC周圍塊狀共晶物的組成成分;用顯硬度計、摩擦磨損試驗儀、高精度電子天平測量基體與熔覆層的性能及質(zhì)量損失,分析了引起性能曲線變化的原因。結(jié)果表明,熔覆層底部到頂部的組織變化為平面晶、晶界明顯的胞狀晶、交錯生長的柱狀樹枝晶、42cr鋼板排列緊密的胞狀晶、方向均一的柱狀樹枝晶; WC陶瓷顆粒具有細化枝晶、阻斷枝晶生長,增強熔覆層性能的能力; WC陶瓷顆粒在熔覆層中聚集分布,形成較寬的陶瓷帶; WC陶瓷顆粒周圍的塊狀共晶物是由WC部分分解得到的,其組成元素包括C、W、Fe、P、Cr。熔覆層平均硬度達到850 HV0.3,是基體平均硬度的3.4倍。摩擦因數(shù)為0.275左右,比基體小0.525。基體的質(zhì)量損失是熔覆層的11倍多。說明Fe-WC合金熔覆層能夠有效基體的硬度及其抗磨損能力。
在42CrMo鋼板的基礎(chǔ)成分上增加Al、Ti元素,通過末端淬火試驗和截面硬度試驗對比分析Al對42CrMo鋼淬透性的影響差異,通過常規(guī)力學(xué)性能檢測對比其與42CrMo鋼的力學(xué)性能差異。結(jié)果表明Al、Ti元素添加可進一步提高淬透性,并且使鋼的強度達到1200 MPa級,-40℃下KV2≥27 J,滿足低溫環(huán)境下螺栓用鋼的使用要求。采用化學(xué)相分析方法,對鋼中析出相進行了定性、定量分析,結(jié)果表明Ti在鋼中添加發(fā)揮明顯固氮作用,提高了Al元素的固溶量,利用熱膨脹法對比測定試驗鋼的等溫轉(zhuǎn)變曲線,證明了增加Al含量,降低了奧氏體臨界轉(zhuǎn)變溫度,使C曲線右移,明顯改善了鋼的淬透性。
通過宏觀及觀分析手段對42CrMo鋼板閥體內(nèi)孔表面裂紋開裂原因進行分析。42crmo鋼板結(jié)果表明:鑄造缺陷、非金屬夾雜物含量較多、調(diào)質(zhì)處理溫度過高、保溫時間較長,以致形成粗大珠光體和大量的魏氏組織是造成鍛件開裂的主要原因,應(yīng)力過大導(dǎo)致了鍛件的開裂。